Fractions (partie 1)

1

Vocabulaire

a

a est le numérateur

b

b est le dénominateur et b est différent de 0.

DÉFINITIONS

 $\frac{a}{b}$ est un quotient. Si les deux nombres a et b sont entiers, alors on peut même dire que c'est une fraction.

Exemple: $\frac{15}{18}$ est une fraction tandis que $\frac{1,5}{18}$ et $\frac{1,5}{1,8}$ sont des quotients.

Dans les deux cas, l'écriture utilisée est l'écriture fractionnaire

1

ASTUCE À CONNAÎTRE

Tout nombre entier peut s'écrire sous la forme d'une fraction (en le mettant sur 1).

- **Example**: Le nombre 21 peut s'écrire $21 = \frac{21}{1}$. C'est aussi le cas pour tous les autres nombres entiers.
- 2

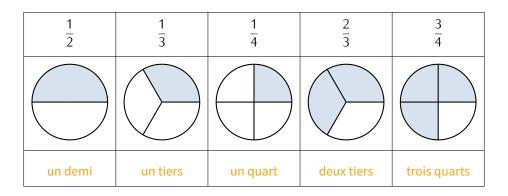
Lecture d'une fraction

1

PROPRIÉTÉ

Pour lire une fraction, on lit d'abord le nombre du numérateur puis le nombre du dénominateur en ajoutant le suffixe « ièmes ».

Exemples: $\frac{4}{7}$ se lit « quatre septièmes » et $\frac{3}{10}$ se lit « trois dixièmes ». Mais il existe des exceptions :



Partage et nombre fraction

DÉFINITION

La fraction $\frac{a}{b}$ est le nombre qui, multiplié par b, donne a. C'est-à-dire : $\frac{a}{b} \times b = a$.

Exemple: $\frac{4}{3}$ est le nombre tel que $\frac{4}{3} \times 3 = 4$.

On a donc $\frac{a}{b}=a\div b!$ Par conséquent, une fraction peut représenter soit un nombre entier $(\frac{12}{4}=12\div 4=3)$, soit un nombre décimal $(\frac{12}{5}=12\div 5=2,4)$, soit un nombre nom décimal $(\frac{1}{3}=1\div 3=0,3333\ldots)$.

Comparaison d'une fraction à 1

PROPRIÉTÉ

- Si le numérateur est inférieur au dénominateur alors la fraction est inférieure à 1;
- ♦ Si le numérateur et le dénominateur sont égaux alors la fraction est égale à 1;
- ♦ Si le numérateur est supérieur au dénominateur alors la fraction est supérieure à 1.
- **Exemple**: Compare les fractions $\frac{11}{15}$, $\frac{15}{15}$ et $\frac{17}{15}$ à 1:

<u>Solution</u>: On a:

- $\frac{11}{15}$ < 1 car 11 < 15,
- $\frac{15}{15} = 1 \text{ car } 15 = 15,$
- $\frac{17}{15} > 1 \text{ car } 17 > 15.$

Utilité des fractions

1 Encadrement par deux nombres entiers consécutifs

1

PROPRIÉTÉ

On effectue la division euclidienne du numérateur par le dénominateur. L'encadrement de la fraction se fait par le quotient entier à gauche et son suivant à droite.

Exemple: Encadre la fraction $\frac{2025}{7}$ par deux entiers consécutifs:

On en déduit que : **289** $< \frac{39}{7} < 290$ (= 289 + 1).

2 Somme d'un nombre entier et d'une fraction inférieure à 1

1

PROPRIÉT<u>É</u>

On effectue la division euclidienne du numérateur par le dénominateur. L'encadrement de la fraction se fait par le quotient entier à gauche et son suivant à droite.

Exemple: Écris la fraction $\frac{2025}{7}$ sous la forme d'une somme d'un nombre entier et d'une fraction inférieure à 1:

Solution: La division euclidienne effectuée tout-à-l'heure nous permet d'écrire que $2.025 = 7 \times 289 + 2$, d'où $\frac{2.025}{7} = 289 + \frac{2}{7}$.